
MUMPS Compiler

Final Report

ITN162 Sem 2 2008

Ray Newman

n6942962

13 November 2008

Supervisor Diane Corney

Coordinator Ernest Foo

Table of Contents

Introduction... 3
The Language... 4
Why MUMPS.. 5
The Project... 8
Problems... 10
Implementation - Scanner... 13
MUMPS Syntax in EBNF... 14
Implementation - Parser.. 17
Parser Data Structure.. 22
Built-in Functions.. 24
Definition of target (output code)............................... 25
Conclusion... 30

On the CDROM

 1). ISO/IEC 11756:1999 - ISO Standard MUMPS
2). Sources One Software MUMPS implementation
3). Extreme Database Programming with MUMPS
4). MUMPS Compiler Routines (save format)
5). MUMPS Compiler Listing for routine FBENCH
6). MUMPS Compiler Final Report (this document)

MUMPS Compiler 2/31 Ray Newman

INTRODUCTION

According to Wikipedia, MUMPS (Massachusetts General Hospital
Utility Multi-Programming System) was created during 1966 and 1967
in Dr Octo Barnett's animal lab at Massachusetts General Hospital;
like Unix a few years later, built on a spare DEC PDP-7.

MUMPS was originally for use in the healthcare industry. It was
designed to make writing database-driven applications easy while
simultaneously making efficient use of computing resources. MUMPS
was adopted as the language-of-choice for many healthcare and
financial information systems databases (especially those developed in
the 1970s and early 1980s) and continues to be used by many of the
same clients today.

It is currently used by the world's largest electronic health record
systems as well as by multiple banking networks and online trading
investment services.

By the early 1970s, there were many and varied implementations of
MUMPS on a range of hardware platforms. The most widespread was
DEC's MUMPS-11 on the PDP-11, and Meditech's MIIS. In 1972, many
MUMPS users attended a conference to standardise the now fractured
language. This also created the MUMPS Users Group (MUG) and
MUMPS Development Committee (MDC). These efforts proved
successful; a standard was complete by 1974, and was approved, on
September 15, 1977, as ANSI standard, X11.1-1977. MUMPS was the
third ANSI standard language after COBOL and FORTRAN.

MUMPS Compiler 3/31 Ray Newman

THE LANGUAGE

The age and origin of the language contributes to its format. While
COBOL and FORTRAN of the era relied on punched cards for input
and therefore had a structure that looked like a deck of cards, MUMPS
due to its DEC base was a terminal or line based language.

Other aspects of the language derived from its origin include its
compact and abbreviated nature and its lack of internal standards; for
example command argument formats vary widely between commands
and the language contains an “indirection” ability that allows
arguments to be supplied indirectly where a variable may contain the
names of the variables to be acted on.

As the language was initially designed to be interpretative in a very
limited machine (limited to 56 KBytes of memory and disks that were
less than one MByte in size, all commands could be abbreviated to
their initial letter (even in the case where two different commands have
the same initial letter). To save on extra scoping commands, the For, If
and Else commands were limited to the current line of the program.

The number of spaces between commands and arguments is
significant; again to make the most of available resources by using the
spaces as delimiters.

MUMPS Compiler 4/31 Ray Newman

Why MUMPS

I first used MUMPS in 1976 while employed by Digital Equipment
Corporation and moved exclusively to using it in 1980 when I
established a computer bureau in Northern NSW. As an indication of
the efficiency of the language, on that machine we could run up to 20
on-line users. The machine was a DEC PDP 11/23 (a 10 KHZ
processor with 128 KBytes RAM and 20 MBytes of disk). Some of the
machines I've installed over the last few years were one million times
faster with 16 thousand times the memory and many thousand times
the disk capacity.

MUMPS is about database. The database is a persistent sparse multi-
dimensional array where both indexes and data are variable length
strings. A simple example is:

^PC("ALBERTON","Q")=4207
^PC("ALBERTON","S")=5014
^PC("ALBERTON","T")=7263
^PC("ALBERTON","V")=3971
^PC("ALBION","Q")=4010
^PC("ALBION","W")=6055

This represents a portion of the Australian post code table. This is a
two level table where the first level is the location and the second level
(which also contains the data) is the state. To create another entry for
Albion Vic, we would enter the command:

SET ^PC("ALBION","V")=3020

This would then appear in the list after Albion, Qld. To remove the
entry for Alberton SA, use the command:

KILL ^PC("ALBERTON","S")

MUMPS Compiler 5/31 Ray Newman

The following code fragment lists locations commencing with ALBERT
with states and postcode.
 Set (Tst,Loc)=”ALBERT”

 For Set Loc=$order(^PC(Loc)) Quit:$extract(Loc,1,$length(Tst))'=Tst Do

 . Write Loc Set St=””

 . For Set St=$order(^PC(Loc,St)) Quit:St=”” Write ?20,St,?35,^(St),!

The output would look like:
ALBERTON Q 4207

 S 5014

 T 7263

 V 3971

The MUMPS database is a heavy weight performer in a light weight
design. As the database is schema-less, there is no necessity to reload
for a design change as there is with the traditional relational model.

For more discussion on using the MUMPS database, see the paper
titled Extreme Database Programming on the accompanying CD and
url
http://www.slideshare.net/george.james/mumps-the-internet-scale-database-presentation

MUMPS Compiler 6/31 Ray Newman

http://www.slideshare.net/george.james/mumps-the-internet-scale-database-presentation

MUMPS is about simplicity. It has only one data type; that is string.
Conversion to a numeric or truth value is automatically performed as
required. For example:

 Write “4 Oranges”+“3 Apples” gives 7

 If “4 Oranges”=”4 Apples” is false - but

 If +”4Oranges”=+”4 Apples” is true - or

 If “4 Oranges” is true - but

 If “Four Oranges” is false

The single data type makes producing html and javascript quite easy
and hence the language is quite useful in writing web servers as no data
conversion is required.

The language also has built in formatting with functions such as
$Justify(value,field_size,decimal_places) and $FNumber(). It also
includes extensive string handling functionality.

MUMPS Compiler 7/31 Ray Newman

THE PROJECT

The purpose of this project is to start to re-implement the MUMPS
language compiler properly doing full analysis of the syntax and
semantics of the language in the process.

The scope of the project includes full analysis of the language as
described in ISO/IEC 11756:1999 and as implemented by One Software
(my development organisation) in 1999 and a start on coding.

It is not expected that the compiler wi! be complete as part of this project.

As the language contains constructs not seen in any other language, it
is expected that the analysis using modern day tools will be quite time
consuming.

Due to an escalating price for the MUMPS environment, in 1999 we
(at One Software) decided to write our own implementation. This was
written "under the whip" - we had committed to install on the new
platform within twelve months.

As a result of the time constraints, the current implementation is not
very well written and given the opportunity this year, I have had a look
at re-writing the compiler portion of the implementation using
modern tools and techniques.

MUMPS Compiler 8/31 Ray Newman

Although the ANSI standard for MUMPS has been allowed to lapse,
the most recent standard (ISO/IEC 11756:1999, re-affirmed on 6
January 2005) still defines essentially the same language. This was
chosen as the standard to apply to this project. Although the original
implementation was done to the ANSI/MDC X11.1-1995 standard, a
comparison showed very little difference in the definitions.

MUMPS Compiler 9/31 Ray Newman

PROBLEMS

The first problem encountered was that the location and number of
spaces in the source code is sometimes significant. That is a line
commences with either a label or a space; a label (and its parameter list
if any) must be followed by one or more spaces. Each command must
be separated from its arguments by exactly one space and if the
command has no arguments, it must be separated from the next
command by at least two spaces unless the original command is the last
thing on the line when no spaces are required. Also, no argument or
argument list may contain an unquoted space.

Another problem is the ability to add a post condition to most

commands (except for If, Else and For) where the syntax is command
colon condition. The condition must be true for the command to be

executed. In the case of the Goto, Do and Xecute commands, the
arguments may also have a post condition. In addition, conditions and

any argument (except arguments to the For command) may be indirect.
The syntax is @ expression where the expression must be evaluated and
then compiled at run time.

As mentioned previously, all commands may be abbreviated to one

character. This gives rise to a problem with the Hang (equivalent a

sleep) and Halt commands. Both may be abbreviated to simply H. The
parser then must work out which command it is by the presence or
absence of arguments to the command.

MUMPS Compiler 10/31 Ray Newman

The double use of the equal sign for assignment and comparison also

gives rise to confusion. The form: Set A=B=C means compare B with

C and assign the result (1 or 0) to A. While the form: Write A=B=C

means compare A with B and compare the result (1 or 0) with C then
write out the result (1 or 0).

Another complication is the inclusion of the Xecute command which
takes an expression (which may be indirect) and compiles and executes
it.

At run-time there is the concept of the “naked indicator”. This is a
pointer to the last location accessed from the database and may be
used as a short-hand method of accessing the database. The contents
of this indicator is very important and must be predictable. This
means the construct If true or expression where expression contains
directly or indirectly a database access cannot be compressed at
compile time; or in code:
 If 1!^DB(“test”,6) Write ^(4) ; Must write out ^DB(“test”,4)

Note that the exclamation mark (!) above represents OR in MUMPS.

On the other hand, MUMPS has some very simple rules; like all
evaluations are strictly left to right (with no precedence) and accessing
the database is exactly the same as accessing a local variable such that
the construct NAME is a local variable and ^NAME is a global variable
(database).

The concept of a “local” variable is what other languages (such as c)
would call a global; in that the variable is (usually) available to all

MUMPS Compiler 11/31 Ray Newman

programs run in the current user space; this unfortunately removes the

possibility of any reasonable compile time optimisation of variable

storage. The variables are just “there” when a program is loaded and when

it is exited.

MUMPS Compiler 12/31 Ray Newman

IMPLEMENTATION - SCANNER

Because of some of the inconsistencies in the definition of MUMPS,
we are unable to use some of the more modern compiler tools such as
YACC.
We are, however, able to use modern design techniques.

We commenced using EBNF (Extended Backus–Naur Form) to
describe MUMPS. The result was a separate definition for the
argument to each command. Then this was compressed to have one
definition to cover all command arguments which resulted in basically
an “anything”.

We settled for a scanner that output only the terminal symbols intlit,
name, number, stringlit and each binary operator (and other
punctuation). This gave a simple scan code stream.

MUMPS Syntax in EBNF is given on the next two pages with the scan
codes used on the following page.
The following is partial scanner output:
 5 write !,"Scanning routine ",RouNam,!
SPACE NAME=write SPACE SCOR SCCOMA STRLIT="Scanning routine " SCCOMA NAME=RouNam SCCOMA
SCOR EOL

 6 ;Say what we are doing
EOL

 7 LOOP for do do GETLINE quit:'$Data(LineBuf)
NAME=LOOP SPACE NAME=for SPACE SPACE NAME=do SPACE SPACE NAME=do SPACE NAME=GETLINE SPACE
NAME=quit SCCOLON SCNOT SCDOLR NAME=Data SCLP NAME=LineBuf SCRP EOL

 8 ;Loop for all lines
EOL

 9 . write !!,$Justify(LineNo,4)," ",LineBuf,!
SPACE LEVEL SPACE NAME=write SPACE SCOR SCOR SCCOMA SCDOLR NAME=Justify SCLP NAME=LineNo
SCCOMA INTLIT=4 SCRP SCCOMA STRLIT=" " SCCOMA NAME=LineBuf SCCOMA SCOR EOL

 10 ;. Display the line being scanned
EOL

MUMPS Compiler 13/31 Ray Newman

MUMPS Syntax

Definitions

controls are the ASCII codes 0 to 31 and 127.
digits are any numeric character '0' ..9.
graphics are any ASCII code 0 to 127 except controls.
letters are any alpha character 'A' .. 'Z', 'a' .. 'z'.
space is the ASCII 32 space character.

Terminal Symbols

binaryop = _ | + | - | * | / | # | \ | ** | = | < | > |] | [|]] | & | ! | ? |
'= | '< | '> | '] | '[| ']] | '& | '! | '?

intlit = digit digit*
name = '%' | letter (digit | letter)*
number = digit (digit)* ['.' digit (digit)*] | '.' digit (digit)*
strlit = In words, a string literal is bounded by quotes and contains
any string of printable characters, except that when quotes occur

inside the string literal, they occur in adjacent pairs. Each
such adjacent quote pair denotes a single quote in the value
denoted by strlit, whereas any other printable character
between the bounding quotes denotes itself. An empty string
is denoted by exactly two quotes.

unaryop = + | - | '

EBNF Grammar

Routine  Line { Line }
Line  [Label] Spaces Dots [Command { Spaces Command }]
Label  name | intlit [‘(‘ NameList ‘)’]
Dots  { ‘.’ [Spaces] }
Command  name PostConditional space [Args]

| ('F[OR]' Var '=' Expr [':' Expr [':' Expr]]
 { ',' Expr [':' Expr [':' Expr]] })

PostConditional  [‘:’ Expr]

MUMPS Compiler 14/31 Ray Newman

Spaces  space { space }

Args  Arg { “,” Arg }
Arg  ['@'] Expr PostConditional

| EntryRef [Actuallist] Postconditional
| EntryRef [Actuallist] ['::' Expr]
| name
| NameList { ':' 'S[ERIAL]' | 'T[RANSACTIONID]'}
| '(' NameList ')'
| Var '=' Var
| Format
| ['*'] Expr
| ['*'] Var ['#' Expr] [':' Expr]
| '(' VarList ')'
| ['+' | '-'] Var
| SetDest | ('(' SetDest { ',' SetDest } ')') '=' Expr
| Expr ':(' Expr ':' Expr ')' [':' Expr [':' Expr]]
| Expr [':' [Expr | ('(' Expr { ':' Expr } ')')]] [':' Expr]
| Expr ':' Expr

Actuallist  '(' [Actual] { ',' Actual } ')'
Actual  ('.' name) | Expr
EntryRef  Label ['+' Expr] ['^' ['|' name '|'] name] |

'^' ['|' name '|'] name
Format  strlit | '!' | '#' | '?' Expr | '/' name ['(' Expr { ',' Expr } ')']
Function  '$' ('$' EntryRef | '&' name | name) ['(' ExprList ')']

| ('$' name '(' Expr ':' Expr { ',' Expr ':' Expr } ')')
Expr  { unaryop } (number | strlit | Var | '(' Expr ')' | Function)

{ binaryop Expr }
ExprList  Expr {‘,’ Expr }
NameList  name { ‘,’ name }
SetDest  Var | '$' name ['(' Var ',' [ExprList] ')']
VarList  Var { ‘,’ Var }
Var  [‘^’ [‘|’ name ‘|’]] name [‘(‘ ExprList ‘)’]

MUMPS Compiler 15/31 Ray Newman

 SCAN CODES

-1=ERROR Generic error
0=EOL End of Line (input)
 --- Start of Operators ---
1=SCCAT Concatenate (underscore)
2=SCPLUS Plus
3=SCMINUS Minus
4=SCMUL Multiply (asterisk)
5=SCDIV Divide (slash)
6=SCMOD Modulus (hash)
7=SCINT Integer Divide (back slash)
8=SCPWR Power (asterisk asterisk)
9=SCEQ Equal
10=SCLT Less than (left caret)
11=SCGT Greater than (right caret)
12=SCFOL Follows (right square bracket)
13=SCCON Contains (left square bracket)
14=SCSA Sorts after (right square bracket right square bracket)
15=SCAND And
16=SCOR Or (exclamation mark)
17=SCPAT Pattern Match (question mark)
18=SCNOT Not (single quote)
19=SCNEQ Not Equal (single quote equal)
20=SCNLT Not Less Than (single quote left caret)
21=SCNGT Not Greater Than (single quote right caret)
22=SCNFOL Not Follows (single quote right square bracket)
23=SCNCON Not Contains (single quote left square bracket)
24=SCNSA Not Sorts After (single quote right square bracket x 2)
25=SCNAND Not And (single quote and)
26=SCNOR Not Or (single quote exclamation mark)
27=SCNPAT Not Pattern Matches (single quote question mark)
 --- End of operators ---
28=SCLP Left Parenthesis
29=SCRP Right Parenthesis
30=SCCOLON Colon
31=SCCOMA Coma
32=SCDOLR Dollar Sign
33=SCCARET Caret (up arrow)
34=SCINDIR Indirection (commercial at sign)
35=SCVB Vertical Bar
36=SPACE Space
37=LEVEL Dot or Period
38=INTLIT Integer Literal (followed with = and value)
39=NAME Name or identifier (followed with = and value)
40=NUMBER Numeric literal (followed with = and value)
41=STRLIT String literal (followed with = and value)
42=EXPR Top node of an expression
43=MUMPSVAR Top node of a MUMPS variable
44=ENTRYREF Top node of an entry reference
45=FUNCTION Top node of a function

MUMPS Compiler 16/31 Ray Newman

IMPLEMENTATION - PARSER

The next step was to parse this stream. After much discussion and
experimentation, the first pass of the parser was written to examine
each line (MUMPS is a line oriented language) to determine the label
(if any), the formal parameters (if any) and the execution level of that
line. The remainder of the line is then parsed to the extent of
recognising each command but leaving the arguments and post
conditions in scan form.

The commands may be separated one from the next by using the fact
that each command (with it arguments) contains exactly one un-quoted
space which is used to separate the command word from its arguments
(if any).

This intermediate structure is stored in a MUMPS database where
subsequent passes simply add elements as they are parsed. The final
pass is to take the fully parsed information from the database and
output compiled code.

Arguments to MUMPS commands are broadly formed from the
following:

1). Expression including literals, functions, variables and sub-
 expressions.

2). Entry references including MUMPS and 'external' routines.
3). Names of Variables being local (to this process) or global (on-disk)

MUMPS Compiler 17/31 Ray Newman

Commands that require Expressions as all or part of the argument are:
Break, Close, For, Hang, If, Open, Quit, Set, Use, View, Write and Xecute.

In addition post conditions are expressions and may apply to the
commands Break, Close, Do, Goto, Halt, Hang, Job, Ki!, Lock, Merge, New,
Open, Quit, Read, Set, Use, Write and Xecute and to individual arguments
to the commands Do, Goto and Xecute.

Commands that require Entry references as all or part of the argument
are: Do, Goto and Job. In addition an Entry reference may be part of a
function definition which forms part of an expression.

Commands that require Names of Variables as all or part of the
argument are: For, Ki!, Lock, Merge, New, Read and Set. In addition
variables may form part of expressions.

Within the arguments of a single command, the types required vary
also. For example the Ki! command has two forms as follows:

1). Inclusive Kill; arguments are any local or global variables that are
 to be un-defined (or killed).

2). Exclusive Kill; arguments must be un-subscripted local variables -
 these being the only local variables that are NOT to be un-
 defined (or killed).

MUMPS Compiler 18/31 Ray Newman

Within the parser, the commands were grouped as follows:

Break, Quit - zero or one argument (expression)

Close, Hang - one or more arguments (expression)

Do - zero or more arguments (entry references)

Else, Halt - no argument permitted

For (no indirection or postconditional permitted) - no argument or a
variable followed by equals and one or more arguments of the form:
expression (initial value) optionally followed by colon expression
(increment) optionally followed by colon expression (terminating

 value).

Goto - one or more arguments (entry references) without actual lists

If (no postconditional permitted) - zero or more arguments
(expression)

Job - one or more arguments (entry references) without
postconditionals

Ki! - zero or more arguments (variables) or one or more unsubscripted
local variables enclosed in parenthesis separated by commas

Lock - zero or more arguments (variables) optionally preceded by either

MUMPS Compiler 19/31 Ray Newman

plus (+) or minus (-) or one or more variables enclosed in parenthesis
separated by commas

Merge - one or more arguments consisting of destination variable
equals source variable

New - zero or more arguments (unsubscripted local variables) or one or
more unsubscripted local variables enclosed in parenthesis separated

by commas

Open - one or more arguments consisting of three to five sub-
arguments (expressions) of the form arg1 ':(' Sarg2 ':' Sarg3 ')' [':' Sarg4
[':' Sarg5]]

Read - one or more arguments each of the form ['*'] variable ['#'
expression] [':' expression] or formatting command which is of the

form *number, ?number, # or !

Set - one or more arguments each of the form: one or multiple
enclosed in parenthesis of a variable, special variable $Ecode, $Estack,
$Etrap, $Key, $X or $Y or the function $Extract() or $Piece() followed
by equals and a source expression

Use - one or more arguments consisting of one or more sub-arguments
(expressions) of the form Sarg1 ['('] [':' Sarg2] [':' Sarg3] ... [')'] [':' last
Sarg] where parenthesis are permitted for two sub-arguments and
required for four or more

View - one argument consisting of two expressions separated by colons

MUMPS Compiler 20/31 Ray Newman

Write - one or more arguments each of the form ['*'] expression ['#'
expression] [':' expression] or formatting command which is of the

form *number, ?number, # or !

Xecute - one or more arguments (expressions) each optionally followed
by a colon and another expression

As can be seen, there are few groupings and many single definitions.
This made both the defining of the syntax initially and then
implementing the grammar in the parser extremely difficult.

Re-entrant subroutines were created to parse expressions, entry
references and MUMPS variables. It is possible for an entry reference
parse to re-enter the entry reference code via a function parse for the
namespace part of the initial entry reference; as it is possible for any of
these three subroutines to call themselves or either of the other two.

The data structure used to contain the parsed routine is described on
the next two pages. Note that both line source and scan codes are held
in the structure. This is for debugging purposes and will be 'switched
off' later.

MUMPS Compiler 21/31 Ray Newman

 PARSER DATA STRUCTURE

The Data Structure used by the MUMPS Parser is stored in a MUMPS on-disk
multi-dimensional array.

For each routine (MUMPS for program or procedure or class) data is stored
by line and indexed by line number; specifically ^%MUMPS(routine,line#)
contains data for that line of the source code. For each line, the following
fields are stored (All are optional):
 Label The routine line label
 Formal Parameters A list of formal parameters for a procedure
 Commands A list of all commands on the line indexed
 by command number

In MUMPS parlance, this looks like:
 ^%MUMPS(routine,line#) = Level number of this line (required)
 ^%MUMPS(routine,line#,"LABEL") = Line label if provided
 ^%MUMPS(routine,line#,"FP",n) = name of Formal Parameter n if provided
 ^%MUMPS(routine,line#,cmd#) contains all information for this command

Information stored for each command is:
 Command word The actual command
 For index variable MUMPSVAR (local) when the command is a For
 Post Conditional The EXPR comprising the post conditional
 Scan codes comprising the Post Conditional
 Arguments A list of scan codes for each of the arguments

The MUMPS specification looks like:
 ^%MUMPS(routine,line#,cmd#) = Command Word
 ^%MUMPS(routine,line#,cmd#,"FORPAR") = MUMPSVAR (local)
 ^%MUMPS(routine,line#,cmd#,"POST") = EXPR
 ^%MUMPS(routine,line#,cmd#,"POST",n) = Expression elements
 ^%MUMPS(routine,line#,cmd#,"POST","SC",n) = ScanCode
 ^%MUMPS(routine,line#,cmd#,"SC",n) = ScanCode

For debugging purposes, the line of source code is held in original form at:
 ^%MUMPS(routine,line#,0) = Line source

For each command, arguments are stored in the command data structure indexed by
argument number as:
 ^%MUMPS(routine,line#,cmd#,Arg#) contains argument structure

This structure differs by command as follows:
 BREAK ,argno) = Value (more than one argument is an error)
 CLOSE ,argno) = Value
 DO ,argno) = ENTRYREF (with PostConditional)
 ELSE -
 FOR ,argno) = Value for start value
 ,"I") = Value for incremental value
 ,"T") = Value for terminating value
 GOTO ,argno) = ENTRYREF (with PostConditional)
 HALT -
 HANG ,argno) = Value
 IF ,argno) = Value
 JOB ,argno) = ENTRYREF
 KILL ,argno) = MUMPSVAR
 or ,argno) = SCLP
 ,n) = NAME value
 LOCK ,argno) = MUMPSVAR
 or ,argno) = SCLP, SCPLUS or SCMINUS
 ,n) = MUMPSVAR
 MERGE ,argno) = MUMPSVAR (contains Source variable)
 ,"D") = MUMPSVAR (contains Destination variable)
 NEW ,argno) = NAME value or $ETRAP or $ESTACK
 or ,argno) = SCLP
 ,n) = NAME value
 OPEN ,argno) = Value - channel no
 ,"p1") = Value - param 1
 ,"p2") = Value - param 2
 ,"to") = Value - timeout

MUMPS Compiler 22/31 Ray Newman

 ,"ns") = Value - namespace
 QUIT ,argno) = Value (more than one argument is an error)
 READ ,argno) = Format (see Note 2) or [*] MUMPSVAR
 SET ,argno) = Value (contains Source)
 ,"dn") = MUMPSVAR/function (Destination n - see Note 3)
 USE ,argno) = Value - channel no
 ,"pn") = Value - param n -> n is 1 incremented by 1
 ,"ns") = Value - namespace
 VIEW ,argno) = Value 1 (chan# always -1)
 ,"blk") = Value 2 (block#)
 WRITE ,argno) Format (Note 2) or [*] Value (* as MOD)
 XECUTE ,argno) = Value (incl postconditional if specified)

A Value is one of the following:
 1. expression EXPR
 2. function FUNCTION
 3. variable MUMPSVAR
 4. literal STRLIT, INTLIT or NUMBER=value

EXPR an expression is contained in a node as:
 NODE) = EXPR
 ,"POST") contains postcond Value if for XECUTE or $SELECT()
 ,n) contains an element which is one of:
 scan code for operator (SCCAT -> SCNPAT) (<SCLP)
 INTLIT, NUMBER or STRLIT '=' value
 EXPR
 SCINDIR (see note 1)
 MUMPSVAR
 FUNCTION

FUNCTION a system function or variable is held as:
 NODE) = FUNCTION
 ,"name") = full name/ENTRYREF of function/variable
 ,n) Contains argument n when "name" is NOT an ENTRYREF

MUMPSVAR a variable is held as:
 NODE) = MUMPSVAR
 ,n) contains Value for nth key
 ,"ind") Contains indirection
 ,"name") = name value
 ,"ssvn") = true if this is an ssvn
 ,"uci") (if defined) 0 = current or contains Value
 ,"MOD") = modifier (used for READ and WRITE)

ENTRYREF an entry ref is held as:
 NODE) = ENTRYREF
 ,n) Actuals = Value or '.' name for "by reference"
 ,"POST") contains postconditional Value if valid and specified
 ,"ind") Contains indirection
 ,"rou") = routine name
 ,"off") = offset
 ,"tag") = tag
 ,"uci") = uci name

Note 1: SCINDIR is an EXPR with the top node set to ISINDIR.

Note 2: Format arguments for WRITE and READ may consist of:
 1. string literal STRLIT
 2. format char SCOR (!) or SCMOD (#)
 3. '?' Value SCPAT Value
 4. '/' name ['(' Value { ',' Value } ')'] - as for Local Var

Note 3: A Set Destination can be: A Variable (MUMPSVAR) or a FUNCTION
 One of: $EC[ODE], $ET[RAP], $K[EY] $X, $Y
 $E[XTRACT](Var[, Expr[, Expr]]), $P[IECE](Var[,Expr[, Expr[,Expr]]])

MUMPS Compiler 23/31 Ray Newman

BUILT-IN FUNCTIONS

The language includes a number of built-in functions and system
variables (functions with no arguments). These take a varying number
and type of arguments as follows:

Functions/Variables - arguments are Value except where noted
Full Name Abbr Min Max Note Arg1
$ASCII() $A 1 2
$CHAR() $C 1 no max
$DATA() $D 1 1 Variable
$EXTRACT() $E 1 3 1
$FIND() $F 2 3
$FNUMBER() $FN 2 3
$GET() $G 1 2 Variable
$JUSTIFY() $J 2 3
$LENGTH() $L 1 2
$NAME() $NA 1 2 Variable
$ORDER() $O 1 2 Subscripted Variable
$PIECE() $P 2 4 1
$QLENGTH() $QL 1 1
$QSUBSCRIPT() $QS 2 2
$QUERY() $Q 1 2 Variable
$RANDOM() $R 1 1
$REVERSE() $RE 1 1
$SELECT() $S 1 no max all args are Condition:Value
$STACK() $ST 1 2
$TEXT() $T 1 1 Entryref
$TRANSLATE() $TR 2 3
$VIEW() $V 2 4

$DEVICE $D
$ECODE $EC 1
$ESTACK $ES 2
$ETRAP $ET 1 and 2
$HOROLOG $H
$IO $I
$JOB $J
$KEY $K 1
$PRINCIPAL $P
$QUIT $Q
$REFERENCE $R
$STACK $ST
$STORAGE $S
$SYSTEM $SY
$TEST $T
$X $X 1
$Y $Y 1

Notes 1 = May be SET
 2 = May be NEWed

Also note that both $Piece() and $Extract() may be the destination for
the Set command.

MUMPS Compiler 24/31 Ray Newman

Definition of target (output code)

The nature of MUMPS requires that it has extensive runtime support.
As examples the local symbol table is external to the compiled code
and the database support code is required to run any MUMPS code.

As it is beyond the scope of this project to provide an extensive
runtime system, it was decided to use the “object code” of the One
Software 1999 implementation and to run with that runtime system to
test the design of the compiler.

A copy of the definition of the output code is included on the
following pages.

MUMPS Compiler 25/31 Ray Newman

// File: mumps/include/opcodes.h
//
// module MUMPS header file - internal op codes (and only real opcodes)

/* Copyright (c) 1999 - 2008
 * Raymond Douglas Newman. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. Neither the name of Raymond Douglas Newman nor the names of the
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 *
 */

#ifndef _MUMPS_OPCODES_H_ // only do this once
#define _MUMPS_OPCODES_H_

#define ENDLIN 0 // End of line
#define OPHALT 1 // Halt instruction
#define OPERROR 2 // short -(ERR) follows
#define OPNOT 3 // boolean (int) NOT
#define OPENDC 4 // end of command
#define JMP0 5 // jump if false
#define OPIFN 6 // no arg if
#define OPIFA 7 // if (check stack)
#define OPIFI 8 // if indirect
#define OPELSE 9 // else

#define OPADD 10 // add top two on the stack
#define OPSUB 11 // (sp-2) - (sp-1)
#define OPMUL 12 // mult top two on the stack
#define OPDIV 13 // (sp-2) / (sp-1)
#define OPINT 14 // integer divide (MUMPS style)
#define OPMOD 15 // modulus (MUMPS style)
#define OPPOW 16 // x to the power y
#define OPCAT 17 // a concatenated with b
#define OPPLUS 18 // unary plus
#define OPMINUS 19 // unary minus

#define OPEQL 20 // a = b
#define OPLES 21 // a < b
#define OPGTR 22 // a > b
#define OPAND 23 // a & b
#define OPIOR 24 // a ! b (inclusive or)
#define OPCON 25 // a contains b
#define OPFOL 26 // a follows b
#define OPSAF 27 // a sorts after b
#define OPPAT 28 // a pattern matches b

MUMPS Compiler 26/31 Ray Newman

#define OPHANG 29 // hang

#define OPNEQL 30 // not a = b
#define OPNLES 31 // not a < b
#define OPNGTR 32 // not a > b
#define OPNAND 33 // not a & b
#define OPNIOR 34 // not a ! b (inclusive or)
#define OPNCON 35 // not a contains b
#define OPNFOL 36 // not a follows b
#define OPNSAF 37 // not a sorts after b
#define OPNPAT 38 // not a pattern matches b
//spare 39

//spare 40
#define CMSET 41 // set
#define CMSETE 42 // set $E()
#define CMSETP 43 // set $P()
#define OPNAKED 44 // set NAKED from mvar on astk
#define CMFLUSH 45 // flush inputs
#define CMREADS 46 // read star
#define CMREADST 47 // read star with timeout
#define CMREAD 48 // read variable
#define CMREADT 49 // read variable t/o

#define CMREADC 50 // read variable count
#define CMREADCT 51 // read variable count, t/o
#define CMWRTST 52 // write star
#define CMWRTNL 53 // write !
#define CMWRTFF 54 // write #
#define CMWRTAB 55 // write ?expr
#define CMWRTEX 56 // write expression
#define CMUSE 57 // use (args) ch, a1, a2, ...
#define CMOPEN 58 // open chan, p1, p2, timeout
#define CMCLOSE 59 // close channel

#define OPSTR 60 // string follows in line
#define OPVAR 61 // eval var name follows
#define OPMVAR 62 // build mvar, name follows
#define OPMVARN 63 // build mvar, (null OK)
#define OPMVARF 64 // bld mvar, no null, full size
#define INDEVAL 65 // eval name indirection
#define INDMVAR 66 // mvar name indirection
#define INDMVARN 67 // mvar name ind (null ok)
#define INDMVARF 68 // mvar name ind, full size
//spare 69

#define OPBRK0 70 // argless break
#define OPBRKN 71 // break with arguments
#define OPDUPASP 72 // duplicate top of astk
//spare 73 -> 79

#define VARD 80 // $D[EVICE]
#define VAREC 81 // $EC[ODE]
#define VARES 82 // $ES[TACK]
#define VARET 83 // $ET[RAP]
#define VARH 84 // $H[OROLOG]
#define VARI 85 // $I[O]
#define VARJ 86 // $J[OB]
#define VARK 87 // $K[EY]
#define VARP 88 // $P[RINCIPAL]
#define VARQ 89 // $Q[UIT]

#define VARR 90 // $R[EFERENCE]
#define VARS 91 // $S[TORAGE]
#define VARST 92 // $ST[ACK]
#define VARSY 93 // $SY[STEM]
#define VART 94 // $T[EST]
#define VARX 95 // $X
#define VARY 96 // $Y
//spare 97 -> 99

MUMPS Compiler 27/31 Ray Newman

#define FUNA1 100 // $A[SCII] 1 arg
#define FUNA2 101 // $A[SCII] 2 arg
#define FUNC 102 // $C[HARACTER]
#define FUND 103 // $D[ATA]
#define FUNE1 104 // $E[XTRACT] 1 arg
#define FUNE2 105 // $E[XTRACT] 2 arg
#define FUNE3 106 // $E[XTRACT] 3 arg
#define FUNF2 107 // $F[IND] 2 arg
#define FUNF3 108 // $F[IND] 3 arg
#define FUNFN2 109 // $FN[UMBER] 2 arg

#define FUNFN3 110 // $FN[UMBER] 2 arg
#define FUNG1 111 // $G[ET] 1 arg
#define FUNG2 112 // $G[ET] 2 arg
#define FUNJ2 113 // $J[USTIFY] 2 arg
#define FUNJ3 114 // $J[USTIFY] 3 arg
#define FUNL1 115 // $L[ENGTH] 1 arg
#define FUNL2 116 // $L[ENGTH] 2 arg
#define FUNNA1 117 // $NA[ME] 1 arg
#define FUNNA2 118 // $NA[ME] 1 arg
#define FUNO1 119 // $O[RDER] 1 arg

#define FUNO2 120 // $O[RDER] 1 arg
#define FUNP2 121 // $P[IECE] 2 arg
#define FUNP3 122 // $P[IECE] 3 arg
#define FUNP4 123 // $P[IECE] 4 arg
#define FUNQL 124 // $QL[ENGTH]
#define FUNQS 125 // $QS[UBSCRIPT]
#define FUNQ1 126 // $Q[UERY] 1 arg
#define FUNQ2 127 // $Q[UERY] 2 arg
#define FUNR 128 // $R[ANDOM]
#define FUNRE 129 // $RE[VERSE]

#define FUNST1 130 // $ST[ACK]
#define FUNST2 131 // $ST[ACK] 2 arg
#define FUNT 132 // $T[EXT]
#define FUNTR2 133 // $TR[ANSLATE] 2 arg
#define FUNTR3 134 // $TR[ANSLATE] 3 arg
#define FUNV2 135 // $V[IEW] - 2 arg
#define FUNV3 136 // $V[IEW] - 3 arg
#define FUNV4 137 // $V[IEW] - 4 arg
#define CMVIEW 138 // VIEW command - 4 args
#define CMMERGE 139 // merge 1 variable from nxt

#define CMDOWRT 140 // DO from WRITE /xxx[(param)]
#define CMDOTAG 141 // DO tag in this rou [args]
#define CMDOROU 142 // DO routine (no tag) [args]
#define CMDORT 143 // DO routine, tag [args]
#define CMDORTO 144 // DO routine, tag, off [args]
#define CMDON 145 // DO - no arguments
#define CMJOBTAG 146 // JOB tag in this rou [args]
#define CMJOBROU 147 // JOB routine (no tag) [args]
#define CMJOBRT 148 // JOB routine, tag [args]
#define CMJOBRTO 149 // JOB routine, tag, off [args]

#define CMGOTAG 150 // GOTO tag in this rou
#define CMGOROU 151 // GOTO routine (no tag)
#define CMGORT 152 // GOTO routine, tag
#define CMGORTO 153 // GOTO routine, tag, off
#define CMXECUT 154 // XECUTE
#define CMXECI 155 // XECUTE indirect
#define CHKDOTS 156 // check current level
#define CMQUIT 157 // QUIT - no arg (not FOR)
#define CMQUITA 158 // QUIT with argument
//spare 159

#defineCMLCKU 160 // un LOCK all
#define CMLCK 161 // LOCK #args()
#define CMLCKP 162 // LOCK + #args()

MUMPS Compiler 28/31 Ray Newman

#define CMLCKM 163 // LOCK - #args()
#define CMNEW 164 // NEW
#define CMNEWB 165 // NEW #args() - new except
#define CMKILL 166 // kill 1 variable
#define CMKILLB 167 // kill but() args
#define NEWBREF 168 // push null for NEW by ref
#define VARUNDF 169 // point at VAR_UNDEFINED

#define LINENUM 170 // set rou line number
#define LOADARG 171 // load args (illegal in line)
#define JMP 172 // unconditional jump
#define CMFOR0 173 // argless FOR
#define CMFOR1 174 // FOR with 1 argument
#define CMFOR2 175 // FOR with 2 arguments
#define CMFOR3 176 // FOR with 3 arguments
#define CMFORSET 177 // setup FOR
#define CMFOREND 178 // Jump to end of line
#define OPNOP 179 // NOP

#define INDREST 180 // restore isp & mumpspc
#define INDCLOS 181 // CLOSE arg indir
#define INDDO 182 // DO arg indir
#define INDGO 183 // GOTO arg indir
#define INDHANG 184 // HANG arg indir
#define INDIF 185 // IF arg indir
#define INDJOB 186 // JOB arg indir
#define INDKILL 187 // KILL arg indir
#define INDLOCK 188 // LOCK arg indir
#define INDMERG 189 // MERGE arg indir

#define INDNEW 190 // NEW arg indir
#define INDOPEN 191 // OPEN arg indir
#define INDREAD 192 // READ arg indir
#define INDSET 193 // SET arg indir
#define INDUSE 194 // USE arg indir
#define INDWRIT 195 // WRITE arg indir
#define INDXEC 196 // XECUTE arg indir
//spare 197 -> 199

//spare 200 -> 229

//spare 230 -> 233
#define XCWAIT 234 // Xcall $&%WAIT()
#define XCCOMP 235 // Xcall $&%COMPRESS()
#define XCSIG 236 // Xcall $&%SIGNAL()
#define XCHOST 237 // Xcall $&%HOST()
#define XCFILE 238 // Xcall $&%FILE()
#define XCDEBUG 239 // Xcall $&DEBUG()

#define XCDIR 240 // Xcall $&%DIRECTORY()
#define XCERR 241 // Xcall $&%ERRMSG()
#define XCOPC 242 // Xcall $&%OPCOM()
#define XCSPA 243 // Xcall $&%SPAWN()
#define XCVER 244 // Xcall $&%VERSION()
#define XCZWR 245 // Xcall $&%ZWRITE()
#define XCE 246 // Xcall $&E()
#define XCPAS 247 // Xcall $&PASCHK()
#define XCV 248 // Xcall $&V()
#define XCX 249 // Xcall $&X()

#define XCXRSM 250 // Xcall $&XRSM()
#define XCSETENV 251 // Xcall $&%SETENV()
#define XCGETENV 252 // Xcall $&%GETENV()
#define XCROUCHK 253 // Xcall $&%ROUCHK()
#define XCFORK 254 // Xcall $&%FORK()
#define XCIC 255 // Xcall $&%IC()

#endif // _MUMPS_OPCODES_H_

MUMPS Compiler 29/31 Ray Newman

Conclusion

The purpose of this project was to start to re-implement the MUMPS
language compiler properly with the main thrust being a full analysis of
the syntax and semantics of the language. This was to have been done
before starting coding but it was found that a certain amount of
prototyping assisted in the design.

We have described MUMPS using EBNF Grammar. A set of scan
codes has been defined and the scanner implemented to produce the
scan code stream.

The parser data structure has been designed and the parser written to
populate the data structure in two passes. The first pass breaks each
line into a label and discrete commands; the arguments are left
unparsed.

The second pass parses the arguments; this being different for each
command.

The next step is to apply further analysis to the parsed database to
apply any possible optimisation and to then produce output for the
MUMPS V1 environment.

Should this show a reasonable increase in speed, I will then attempt to
re-code the scanner and parser in c to incorporate it into the current
environment.

MUMPS Compiler 30/31 Ray Newman

Although using tools like LEX and YACC proved to be not feasible, a
proper design has produced a relatively clean output from the parser.
The project has also shown that the MUMPS language itself is suited
to compiler writing.

Ray Newman
13 November 2008

MUMPS Compiler 31/31 Ray Newman

